
Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 59

 Competency based learning framework of

Introductory Programming course to enhance

learner’s motivation and skills

Muhammad Usama Ijaz1, Maida Shahid2 & Talha Waheed3*

Journal of Educational

Psychology and Pedagogical

Sciences (JEPPS)

ISSN:2791-0393 (Print) eISSN:

2791-0407

1MPhil Scholar, Department of Computer Science, University of Engineering

and Technology, Lahore, Pakistan. Email: mirza.osama96@gmail.com

Vol.5, No. 1, (Jan-June, 2025):

59-86

2 MPhil Scholar, Department of Computer Science, University of Engineering

and Technology, Lahore, Pakistan. Email: maida.shahid@uet.com

3*Corresponding Author. Assistant Professor, Department of Computer

Science, University of Engineering and Technology, Lahore, Pakistan. Email:

twaheed@uet.com. (https://orcid.org/0000-0003-3825-5810).

 ABSTRACT

 Computers have revolutionized business, education, government,

commerce, and research, creating rapidly expanding career opportunities

in computer science and related fields. As a result of these technological

breakthroughs, computer science-related jobs are growing at a fast pace.

However, computer science graduates have a high unemployment rate

despite a significant need for computing and technology experts. This high

level of unemployment is due to the discrepancies between the concepts

taught in computer science degree programs and the skills required in the

software industry. To fill this skill gap, Computing Machinery (ACM) and

IEEE Computer Society (IEEE-CS) have devised guidelines for a new

computing curriculum of BS (Computer sciences/IT) 1st semester in 2020

that has shifted the trend from Knowledge-based Learning to Competency-

based learning. Many researchers have discussed skills and competencies,

but they are not designing the programming courses by specifically

targeting the skills needed in the IT industry. Therefore, this research aims

to enhance the skills of students to match the skills needed in the IT

industry by following competency-based learning among BS students. We

have designed the introductory programming course based on three mega

competencies that the software industries value. These are further divided

into 8 mini competencies and sixty-two mini competencies to be easily

taught in a 2-3 hour lecture duration. We also present our teaching

experience with undergraduate computer science students at the University

of Engineering and Technology, Lahore, Pakistan. Results show that

competency-based learning had a positive impact on increasing students'

motivation and improving their programming skills.

Submitted 11 Jan 2025

Accepted 12 June 2025

Published 30 June 2025

DOI: https://doi.org/

10.52587/jepps.v5i1.110

https://jepps.su.edu.pk/article/49

 Keywords: Competency-based learning, competencies, 4C/ID model,

programming skills, Undergraduate computing course, teaching

framework

1. Introduction

With the advancements in technology, computers have conquered almost every aspect of our

daily lives (Aspray, 2013). From our homes to our work, from our studies to our entertainment

OPEN ACCESS

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 60

devices, the use of computers is everywhere (Hennig-Thurau et al., 2021; Voskoglou, 2021).

This intense use of computers has opened up a huge portal of job and career opportunities. The

Bureau of Labor Statistics estimated that the computing job openings will increase by 12% in the

US by 2024 (Labor, 2017). With this huge number of job openings, students have started taking

admission in IT and Computer Science degree programs. However, most students enrolled in the

universities drop out of their degrees without completion. At the same time, the students who do

complete their degrees have a very hard time securing a good job (Bennedsen & Caspersen, 2007;

Petersen et al., 2016; Watson & Li, 2014). Therefore, the need for software engineers continues

to rise.

Traditionally, universities follow the Knowledge-Based Learning (KBL) approach (Whitehall

& Lu, 1994), which has served a lot in teaching different subjects. However, with the demanding

skills and competencies, KBL failed to deliver according to the expectation (Clear et al., 2019).

The primary reasons for that are: focus on content rather than on students, lack of motivation, and

less or no focus on developing skills and competencies. In the KBL approach, the students are

bombarded with a huge amount of knowledge in the form of lectures and slides, more knowledge

than they need. Students just cram this knowledge to pass their exams. This cramming does help

the students secure their degrees. However, these students with an immense reservoir of

knowledge struggle to implement that knowledge. Thus, the students are left with only knowledge

but no skills (Begel & Simon, 2008).

Around 60% of US employers reported job openings that stay vacant for up to three months,

and 81% of IT employers stated that their fresh employees are deficient in many skills, in which

critical thinking and analytical reasoning are on top (McGlochlin, 2018). In this technological era,

employers demand a fresh employee with an impeccable set of skills, not just knowledge of those

skills (Carnevale & Smith, 2013; Hetling et al., 2014). This gap between the employers' demanded

skills and those the students acquire is known as the 'Skills Gap' (Kim et al., 2006).

Another problem with KBL is that the students face difficulty visualizing the bigger picture.

Therefore, they lose focus and motivation without the implementation of that knowledge (Cheah,

2020). They are unable to correlate their classroom learning with the real-life problems that are

solved in the IT industry. Thus, they do not know how to use this newly acquired knowledge to

excel in their professional careers. This puts the students under a psychological strain that drains

their confidence and motivation, leaving them with anxiety and self-doubt (Tan et al., 2009).

In order to resolve these issues, the Association for Computing Machinery (ACM) and IEEE

Computer Society (IEEE-CS) has provided a Computing Curricula based on competency-based

learning that contains the paradigms for Global Computing Education (Force, 2020). This

curriculum provides guidelines to computing instructors worldwide on effectively designing the

competencies for computing courses. The basic idea behind this is to teach the most commonly

used skills in the IT industry to the students one by one, rather than just the bucket full of

knowledge. The Harvard University Competency Dictionary (Harvard University Competency

Dictionary FY14, 2014) defines competency as:

"Competency composes an expanded perspective on education that augments knowledge

(knowing what), with its skilled application (knowing how), motivated by the purpose (knowing

why) to accomplish a task."

Each of these competencies comprises three components; knowledge, skill, and vision of a

task. The knowledge represents the KNOW-WHAT of the task, i.e., a student knows what

techniques she would need to solve that task. The skill represents the KNOW-HOW, i.e., how will

she use her acquired knowledge to solve that task? Furthermore, the vision is simply the

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 61

KNOW-WHY, i.e., why she is doing it? A normal student can only be called a competent

student if she possesses all three of these components.

Fulfilling the need of the hour, the Skills Framework for the Information Age (SFIA) stipulates

the globally acknowledged competencies and skills required in the IT industry. The recent version

of SFIA framework (SFIA 8) mentions 102 skills and competencies that the IT industry values

(von Konsky et al., 2016).

Usually, a skill provided by SFIA is very general and can be distributed over different subjects.

So, we have to cover all those subjects before trying to achieve a single skill. While first studying

those subjects, students lose sight of the bigger picture of how these subjects are interlinked; thus,

their motivation diminishes. Also, most of the talked about the skills and competency researchers

(Kaharuddin, 2020; Rojas-López, 2019; Sultana, 2016). However, there is no proper road map for

the instructors on designing the courses and preparing their lectures by following competency-

based learning. The researchers who have designed computing courses have done so without the

key element of competency-based learning (Gavrilović et al., 2018).

Thus, this research aims to improve the skills of CS graduates such that they match the skills

required by the IT employers and increase the motivation of the students by teaching the

introductory programming course based on competency-based learning.

This paper focuses on answering the following research questions:

What could be possible competencies for the introductory programming fundamentals course.

How can we divide these competencies into the mini and micro competencies for delivering

the contents ideally in a lecture, and how to assess those competencies.

To address these research questions, we divide these competencies into three categories.

Mega Competencies (Level 3)

Mini Competencies (Level 2)

Micro-Competency (Level 1)

Introductory programming course consists of three mega competencies that the IT industry

values. These mega competencies are further divided into eight mini competencies, which are

further divided into sixty-two micro competencies. It is much easier for the instructor and the

student to cover a micro competency in a single lecture. These micro competencies consist of

vision (KNOW-WHY) (i.e., why study the following concepts), knowledge (KNOW-WHAT)

(i.e., what concepts to study), and skill (KNOW-HOW) (i.e., how to use the concepts to solve the

real-world problems). So, every micro competency induces knowledge of one skill into the

students, and they get hands-on practice to acquire that skill. After covering certain micro

competencies, a mini competency is achieved. Then, after covering certain mini competencies,

mega competency is achieved, which helps achieve the Computer Science degree. This approach

is distinguished from the rest as it keeps the students' interest intact the whole time by showing

them the broader picture. The students know beforehand what they will achieve by the end of

every micro competency and develop the required skills along the way. This improves the

students' learning skills, confidence, motivation, and communication with their employers in the

long run.

The rest of the paper is as follows. Section 2 provides the systematic literature review. Section

3 describes the proposed framework. In section 4, we describe the experimentation. Section 5

provides the experimentation results, and section 6 discusses the results.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 62

2. Literature Review

Advancements in the field of pedagogy have always been the concern of the teaching

community (Sobral, 2021). Researchers around the globe have strived for new and better

approaches in this field. For decades, Association for Computing Machinery (ACM) has been

working to improve the field of Computing (Dziallas & Fincher, 2015) and providing new

teaching curriculum guidelines according to the institutional goals and needs. The Knowledge-

Based Learning (KBL) Computing Curricula 2005 (Shackelford et al., 2006) proposed curriculum

guidelines for five computing programs: Computer Engineering, Software Engineering, Computer

Science, Information Systems, and Information Technology. It introduced a structure of

Knowledge Units (KU) and Learning Outcomes (LO). This approach targets students' existing

knowledge and builds up new knowledge on top of it (Geissler et al., 2020). The majority of the

educational institutes in the world still use Knowledge-Based Learning to produce graduates

(Longenecker et al., 2015).

ACM continued to develop computing curricula for CS in 2008 (Cassel et al., 2008) and

computing curricula for CS in 2013 (Draft, 2013). Despite teaching courses designed on the latest

guidelines provided by ACM, instructors found deficiencies in students' programming skills.

Therefore, researchers continued to experiment with different teaching methodologies to

overcome the students' lack of skills. Widely opted teaching methodologies for introductory

programming courses include Active Learning (Barak et al., 2007), Pair Programming (Hannay

et al., 2009), Flipped Classroom (Souza et al., 2015), and Project-Based Learning (Havenga,

2015). Each of these techniques induced interest and motivation of the student in programming,

decreased the dropout ratio of the students but was unable to produce the industry-required skills

in the students (Sobral, 2021).

Many authors proposed different teaching methodologies for teaching programming to novice

programmers. The study by Woodley and Kamin (2007) argued the need for reforms in the

teaching methodologies by providing a study for improving programming skills in

undergraduates. The authors proposed a programming studio environment (like that of an art class)

in which the instructor will give a one-hour lecture, followed by two hours discussion with the

students. The study's experiment continued for two years and claimed that the students' skills

significantly increased throughout the course.

The study by Liu and He (2015) proposed "business-oriented education." They sought help

from the IT employers to give the recommended training to undergraduate students so that they

might perform better in the industry. The study resulted in the professional computer education of

the students. All these studies revealed that the KBL approach was insufficient to match the skills

required by the IT industry.

The Skills Framework for Information Age (SFIA) provides a framework of skills defined by

the collaboration of the IT industry employers (Brown, 2020). Some of the skills mentioned in

SFIA 8 framework are programming/software development, software design, systems software,

data modeling and design, data management, database design, database administrator, testing,

information management, information security, quality assurance, data science, high-performance

computing and machine learning cover the Computer Science degree program. The skill of

Programming/Software Development is as follows:

"Designs, codes, verifies, tests, documents, amends and refactors programs/scripts."

This is a very general skill, and it could only be covered during a series of different computer

science courses such as programming fundamentals, object-oriented programming, data

structures, software development, and software engineering.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 63

The curriculum for Information Communications and Technology (ICT) based on the

framework given by SFIA (Konsky et al. 2016). The results of the study showed the positive

impact of IT employers in defining the required skills in the curriculum. The results confirmed the

need for skills and competencies in designing the IT-related programming curricula.

There are three major components of a competency: 'knowing-what' of knowledge, second is

the 'knowing-how' of that knowledge (how to implement that knowledge), and the final is the

'know-why' (what can be accomplished after acquiring that knowledge). These three components

are crucial in the student's learning and to make him/her stay focused during this learning. To

Fulfil the growing demand for skills, ACM presented new guidelines based on competency-based

learning (CBL) in the 2020 computing curricula (Clear et al., 2019). This curriculum provided

guidelines to the computing instructors worldwide on effectively designing the competencies for

computing courses. The basic idea is to teach the most commonly used skills in the IT industry to

the students one by one, rather than just a bucket full of knowledge.

The initial learning scenarios of the Programming Fundamentals course was designed by

Rojas-López et al. (2019). The main focus was to enhance the motivation and skills of the students.

The idea was to develop the students' computational thinking by providing a course that mapped

computational thinking skills to programming knowledge. The study targeted three trends, i.e.,

recognition of previous skills, training of new competencies, and preventive actions of the

instructor's communication when a student lacks a specific skill. However, the study introduced

the competencies at a higher abstraction level that might hinder the students' motivation towards

learning.

While designing an informatics curriculum for K-12 education, constructivism (learning by

doing) and critical thinking (the creative process of development) was focused (Dagiene et al.

2021). The study presents the curriculum contents for four subjects: Algorithm Design, Robotics,

Programming, and Communication in Networks. Each subject consisted of around ten

competencies, but these merely instructed the students on the "what" and "how" of the

development phase. The study failed to convey the 'why' behind development to the students and,

consequently, did not show them the broader picture of what they could achieve with these

competencies. This led to the students' loss of motivation, which meant they needed to continue

on the path of learning during the course.

Zhang. et al. (2020) conducted a study to validate how computational thinking skills are taught

to K-9 students with the help of programming. The study's primary objective was to observe the

progression of computational thinking (CT) skills throughout a student's compulsory education.

The authors divided the CT skills according to the students' grades: 1-3, 4-6, 7-9. They found out

that the skills devised by the authors were only grasped, in a better fashion, by the students of the

third group. However, the authors were unable to implement the CT concepts into the CT skills,

i.e., they provided the CT concepts to the students but did not validate those concepts in the study.

Although these studies incorporated competencies into their curriculum designs, they failed to

provide a holistic view of the competencies that encompassed the entire undergraduate degree

program in Computer Science.

At Western Governors University (WGU), USA, the university council defined a high-level

set of competencies for each degree. After that, a group of contracted domain experts broke down

the ten or so high-level competencies for a particular qualification into about thirty more specific

competencies, around which the online courses to develop mastery of each competency were built.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 64

Graduates' competencies were based on what they should know in the job and as professionals

in their chosen field. Assessments were meant to evaluate mastery of each ability; as a result,

students receive a pass/fail grade after each assessment. A degree is given when all thirty required

skills are met (Marcus, 2017).

For the introductory programming course, they covered the following competencies:

1. Begin your course by discussing your course planning tool report with your instructor and

creating your personalized course plan together.

2. The graduate examines basic computer programming elements, including data types,

constants, variables, operators, and expressions.

3. The graduate determines how to achieve programming goals through functions and control

structure.

4. The graduate interprets algorithms.

5. The graduate describes the steps of the software design process.

6. The graduate compares various scripting and programming languages.

These online degree programs have made great progress with nearly 40,000 students because

they just taught the specific subjects to the students in each degree. These competencies are very

general and do not cover the vision of what the students will achieve or produce after completing

the specific course. Moreover, these so-called competencies are similar to learning objectives

defined in knowledge-based learning. Furthermore, these degree programs ignore the importance

of social learning, and these work well with some learning environments but lesser with others.

3. Research Methodology

The methodology of designing the Computing Curricula is composed of the following parts

as shown in Figure 1.

• Mega Competencies (Level 3)

• Mini Competencies (Level 2)

• Micro Competencies (Level 1)

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 65

Figure 1

Methodology of Introductory programming course design based on Competency-based Learning

SFIA framework has provided 102 skills and competencies that the CS graduates require.

These are distributed into multiple subjects during a four-year Computer Science degree program.

According to our framework, each Computer Science course is divided into multiple mega

competencies. These mega competencies are divided into multiple mini competencies that can be

covered in about two weeks. These mini competencies are further divided into micro competencies

that can be covered in a 2-3 hour lecture duration.

This research paper only focuses on defining the competencies of introductory programming

courses.

Mega Competencies: Introductory Programming Course

Mostly, CS graduates are required to work on business applications or game development in

their professional life. Therefore, the objective of a computer science degree must be to produce

such skilled graduates that have the matching skills needed in the IT industry. Thus, this research

paper defines the following three mega competencies for the programming fundamentals course

by following the guidelines provided by Computing Curriculum 2020.

1 Develop a monolithic in-memory business application for the console while the

requirements and design are given (or a well-guided tutorial is present).

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 66

2 Develop a 2D tile-based game for the console while requirements and design are

given (or a well-guided tutorial is present).

3 Solve real-world problems using computational thinking and programming

constructs.

These competencies represent actual Graphical User Interface (GUI) based business

applications and game development that the IT industry values, but we have restrictions on

developing the user-friendly applications due to prior knowledge of novice learners. Therefore,

currently, the introductory programming course focuses on console-based applications.

These mega competencies have greater complexity, so these are decomposed into eight mini

competencies.

Mini Competencies

Following are the eight mini competencies.

1. Analyze and Write Algorithms for converting one form of data (input) into another

form of data using mathematical expressions with limited memory and available

computational steps. (Algorithms)

2. Analyze and Write Computer Programs for converting one form of data (input) into

another form of data using mathematical expressions. (Input/Output)

3. Analyze and Solve computational problems based on single and multiple conditions.

(Conditional Statements)

4. Analyze and Solve complex computational problems involving repetition of

dependent and independent iterations. (Loops)

5. Analyze and Solve complex computational problems involving large amounts of

data. (Arrays)

6. Analyze and Solve complex computational problems by decomposing them into

reusable blocks of code. (Functions)

7. Analyze and Solve complex computational problems by using persistently stored

data. (File Handling)

8. Develop a 2D Game with the interaction of characters and a reward system (2D

Arrays).

Every mini competency covers the basics of an introductory programming course (i.e.,

algorithms, input/output, conditional statements, loops, arrays, functions, file handling, and 2D

arrays). It can be covered in a two-week duration. After completing the first seven mini-

competencies, students can make any business application to store data into files, thus achieving

the first mega competency. Mini competencies up to the file handling are the prerequisites of the

second mega competency. Then the last mini competency is on 2D console-based game.

Therefore, after completing all the eight mini competencies, students can easily develop any 2D

tile-based game. The third mega competency is on problem-solving skills. Therefore, all mini

competencies come under its umbrella.

The complete roadmap of the introductory programming course is given in Figure 2.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 67

Figure 2

Roadmap of Introductory programming course

Micro Competencies

These mini competencies are divided into sixty-two micro competencies to teach at the lecture

level. Skill levels of these micro-competencies are defined based on the levels of Bloom’s

taxonomy in the cognitive domain (Huitt, 2011). The contents to achieve these micro

competencies are designed to engage the student in a thinking process instead of just delivering

the concept to the student. These are designed by following the Four Component Instructional

Design (4C/ID) model (Güney, 2019).

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 70

Each micro competency is drafted by dividing it into four categories.

1. Problem Visualization (Know-Why)

2. Knowledge Representation (Know-What)

3. Working Example (Know-How)

4. Self-Assessment (Reinforcement)

First, the students are shown the goal or vision of the lecture. A question then arises about how

to achieve the goal. According to a study by Rosegard et al. (2013), raising questions is one of the

attention-getting techniques and methods for classroom involvement. Furthermore, related

questions are asked to ensure the student fully understands and grasps the problem at hand. He

starts to think about what could be the possible solution and how to solve the problem or achieve

the target. When the student is truly engaged, the instructor delivers the actual concept. The

relevant knowledge required to solve the problem is provided to the student. Then, after delivering

the knowledge, the instructor gives a working example to show how to use that knowledge to

solve similar problems. Finally, students are given similar tasks in self-assessment to reinforce the

learned concept.

The following are the micro competencies of the third mini competency (Conditional

Statements)

1. Solve a problem using a single conditional statement with one Boolean expression

consisting of an Equal comparison operator. (IF Statement)

2. Solve a problem using a single conditional statement with one Boolean expression

consisting of any comparison operator. (IF Statement)

3. Solve a problem that involves multiple decision-making using conditional

statements. (multiple IF Statements)

4. Solve a problem that makes multiple decision-making more optimized by checking

fewer conditional statements. (IF-ELSE Statement)

5. Solve a problem that makes complex decision-making using nested conditional

statements. (Nested IF Statement)

6. Solve a problem that involves complex decision-making using a single conditional

statement with two Boolean expressions and the AND logical operator.

7. Solve a problem that involves complex decision-making using a single conditional

statement with two Boolean expressions and the OR logical operator.

8. Solve a problem that involves complex decision-making using a single conditional

statement with two Boolean expressions and the NOT logical operator.

9. Solve a problem that involves complex decision-making using a single conditional

statement with multiple Boolean expressions and multiple logical operators.

10. Solve a problem that involves complex decision-making using a single conditional

statement with multiple Boolean expressions and multiple logical operators while

considering the precedence rules.

The complete Introductory programming course design, categorized into mega, mini, and

micro competencies, is given in Appendix A.

4. Analysis and Results

Experimentation

The Introductory Programming course was taught in two sections (Section A and Section B)

of the Computer Science program (Session 2020) at the undergraduate level at the University of

Engineering and Technology, Lahore, Pakistan. The course was executed in three hours of theory

lecture and nine hours of lab work per week.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 70

Section A was taught the aforementioned designed Introductory Programming course based

on the Competency-Based Learning (CBL) approach. In contrast, Section B was taught the

traditional Introductory Programming course that followed the Knowledge-Based Learning

(KBL) approach. Both sections had 50 students each. Section A contained 30 female and 20 male

students, and Section B contained 26 female and 24 male students, as shown in Table 1.

Table 1

Students Data

Section Methodology Total Students No. of Males No. of Females

Section A CBL 50 20 30

Section B KBL 50 24 26

Both sections were judged on the same levels. They were taught the same knowledge elements

(variables, arrays, loops, etc.), given the same assignments, quizzes, and Mid-term and final

evaluation exams.

As the course progressed, the students of both sections were compared on the following two

levels.

1. Affective Level

2. Cognitive Level

A survey checked the Affective level of the students after completing each micro-competency,

i.e., after every two weeks (Appendix B). These surveys were given to the students after

completing their assignment after every micro-competency, composed of real-life programming

problems. This survey consisted of two parts.

1. How am I doing programming

2. How am I feeling

These parts were ranked from level 1 to 4, with level 4 being the highest, as shown in Table

2.

Table 2.

Motivation Levels based on programming and feeling levels of the student

Motivation Levels How I am Doing Programming How I am Feeling

Level 4 I did it without any help Confident!

It was a piece of cake.

Level 3 I did it with a little help. Thrilled!

It was challenging but I am feeling

thrilled now.

Level 2 I made the logic but my code is not

working.

Confused!

I got confused after this exercise.

Level 1 I could not make the logic. I need more

help to understand it

Depressed!

I am depressed because I cannot do

it.

The students ranked their progress and feeling level in their assignments, which defined the

Affective level. The student's cognitive level was checked by quizzes, Mid-term, finals, business

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 70

application, and game project. There were two quizzes with 10 marks each; one before the

Midterm and one before finals. The Midterm exam, consisting of 20 marks, was held after eight

weeks of study, and the final exam, consisting of 40 marks, was held after a total of 16 weeks of

study. A 10-mark Business Application project assessment was taken after completing seven mini-

competencies. Game project assessment of 10 marks was taken after the completion of all eight

mini competencies.

Table 3 shows the number of exams taken and their mark coverage.

Table 3.

Exams and their marks coverage

Exams Marks

Quiz 1 10

Quiz 2 10

Business Application 10

Mid-term exam 20

2D Game 10

Finals 40

5. Results

This section presents the results of the experimentation mentioned above.

i. Affective level

Figure 3 and 4 shows the result of the survey conducted after covering mini-competency 3.

The x-axis shows the feeling level and the y-axis shows the number of students on each level.

Section A was taught by following the Competency based learning (CBL) and their results are

represented by dark blue color. Section B was taught by following traditional Knowledge based

learning (KBL) and their results are represented by light blue color.

Figure 3

Feeling level 1 and level 2 of the 2 Sections

(Negative Feelings)

Figure 4

Feeling level 3 and level 4 of the 2 Sections

(Positive Feelings)

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 71

Figure 3 presents the number of responses of both sections on negative feelings, Level 1

(Depressed!) and Level 2 (Confused!), whereas Figure 4 presents the positive feelings, Level 3

(Thrilled!) and Level 4 (Confident!).

ii. Cognitive level

Figure 5 shows the average marks of quizzes, Mid-term, Final exam, business application, and

game project of both sections separately. The x-axis shows the type of the exam, and the y-axis

shows the average marks of 50 students. Section A was taught by following Competency-based

learning (CBL), and their results are represented by dark blue color. Section B was taught by

following the traditional Knowledge-based learning (KBL), and the results are represented by

light blue color.

Figure 5

Average Exam marks of 2 Sections

6. Discussion

The major contribution of this research is of designing the mega, mini, and micro

competencies of the introductory programming course based on 2020 computing curricula

guidelines. Proposed mega competencies are carefully designed by matching the skills needed in

the IT industry. These competencies give the bigger picture of what we want to accomplish that

proves meaningful to both employers and students. Mega competencies are further divided into

mini competencies, covering all the basics of introductory programming course and showing how

to accomplish the mega competencies. After covering the first seven mini competencies, students

can make any console-based business application. After covering the eighth mini competency,

students can make any 2D console-based tile game. The mini competencies are further divided

into micro competencies to form a concrete lecture plan to be easily executed in a classroom.

Contents of the micro competencies are designed by following the 4CID model. Each micro

competency starts with problem visualization. In this, students are anchored so that they fully

understand the problem at hand. After that, students are only taught the concepts needed to solve

the problem in the knowledge representation phase. Then they are presented with a working

example and its solution to show how the concepts are used to solve the real-world problem. Then

they are given a self-assessment at the end of the lecture to reinforce the concepts taught in the

lecture.

When executed in the classroom, the designed course proved efficient in increasing the

students' motivation, as shown in Figure 4. Section A students showed a more positive response

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 72

 in their classes and assignments than Section B. Students of section A felt more confident and

thrilled while studying the competency-based course than the students of section B studying the

traditional course (Figure 4). This was because the section A students were shown the bigger

picture, and they knew why they were studying the relevant concepts and why they needed to

study those concepts. The programming tasks were given gradually with increasing complexity

level after every micro competency and then more complex tasks after completing every mini

competency. Therefore, Section A students were willing to do programming problems more by

themselves because they could code themselves compared to the students of Section B. Section B

students were more confused than section A students while doing the programming tasks (Figure

3). This was because the students of section B were bombarded with knowledge without

motivating and inspiring them on why they were studying the related concepts. Section B students

found it very difficult to apply the taught concepts in solving real-world problems. Thus, the

overall Affective level of the students of section A was positive compared to the students of

section B (Figure 3 and 4).

While covering the micro-competencies, students' skill levels increased more than the students

of section B. Figure 5 shows the average marks of all the exams conducted. Section A performed

better than section B in each and every exam. This was because the Section A students were

internally motivated as they could solve the problems gradually with increasing complexity. Even

the students of Section A came up with many innovative ideas for their business application and

game project. They were thrilled to try and solve different and new problems by themselves, and

they knew how the related concepts added up to complete the bigger picture.

Due to the Covid-19 situation, some of the classes had to be conducted online, but the overall

response of the course designed based on competencies proved more efficient than the traditional

introductory programming course.

7. Conclusion

After following the guidelines of ACM on computing curricula, we have designed an

introductory programming course based on mega, mini, and micro competencies. The proposed

competencies of the introductory programming course produce the programming skills in the

students that the IT industry values. This course design provides a roadmap for instructors in

lecture preparation to engage the students in the contents and keep their motivation intact. Results

have proven that the students taught by following competency-based learning preferred to involve

and solve programming problems actively than those taught by following the traditional

knowledge-based learning.

To fulfil the need of the hour, our future work includes converting these competencies and

micro-competencies course into an adaptive e-learning system. We also intend to develop the

competencies and micro-competencies for object-oriented programming.

DECLARATION STATEMENTS

Conflict of Interest

The authors declare no actual or perceived conflicts of interest. They also confirm that no external

funding was received for this study, beyond the allocation of academic time at their respective university.

Data Availability Statement

The data used in this study will be provided by the corresponding author on request.

Authors’ Contribution

MUI: write-up, designing exams materials, Review, formatting. MS: Defining classroom competences,

Methodology, Experimentation, Review and formatting. TW: Revie, logic structure, text re-articulation

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 73

8. References

Aspray, W. (2013). Computers, information, and everyday life. IEEE Annals of the History of

Computing, 35(4), 96. DOI: 10.1109/MAHC.2013.46

Barak, M., Harward, J., Kocur, G., & Lerman, S. (2007). Transforming an introductory

programming course: From lectures to active learning via wireless laptops. Journal of

Science Education and Technology, 16(4), 325–336. DOI: 10.1007/s10956-007-9055-5

Begel, A., & Simon, B. (2008). Struggles of new college graduates in their first software

development job. Proceedings of the 39th SIGCSE Technical Symposium on Computer

Science Education, 226–230. DOI: 10.1145/1352322.1352218

Bennedsen, J., & Caspersen, M. E. (2007). Failure rates in introductory programming. AcM

SIGcSE Bulletin, 39(2), 32–36. DOI: 10.1145/1272848.1272879

Brown, J. (2020). An examination of the Skills Framework for the Information Age (SFIA)

version 7. International Journal of Information Management, 51, 102058.

DOI: 10.1016/j.ijinfomgt.2019.102058

Carnevale, A. P., & Smith, N. (2013). Workplace basics: The skills employees need and

employers want. In Human Resource Development International (Vol. 16, Issue 5, pp.

491–501). Taylor & Francis. DOI: 10.1080/13678868.2013.821267

Cassel, L., Clements, A., Davies, G., Guzdial, M., McCauley, R., McGettrick, A., Sloan, B.,

Snyder, L., Tymann, P., & Weide, B. W. (2008). Computer science curriculum 2008: An

interim revision of CS 2001. ACM. DOI: https://doi.org/10.1145/2593246

Cheah, C. S. (2020). Factors contributing to the difficulties in teaching and learning of computer

programming: A literature review. Contemporary Educational Technology, 12(2), ep272.

DOI: 10.30935/cedtech/8247

Clear, A., Parrish, A. S., Impagliazzo, J., & Zhang, M. (2019). Computing Curricula 2020:

introduction and community engagement. Proceedings of the 50th ACM Technical

Symposium on Computer Science Education, 653–654. DOI:
https://doi.org/10.1145/3287324.3287517

Dagiene, V., Hromkovic, J., & Lacher, R. (2021). Designing informatics curriculum for K-12

education: From Concepts to Implementations. Informatics in Education, 20(3), 333–

360. DOI: 10.15388/infedu.2021.22

Draft, S. (2013). Computer Science Curricula 2013. ACM and IEEE Computer Society,

Incorporated: New York, NY, USA.

https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e32b65428b8ea54fd628839fd7386c88716a319b

Dziallas, S., & Fincher, S. (2015). ACM Curriculum Reports: A pedagogic perspective.

Proceedings of the Eleventh Annual International Conference on International

Computing Education Research, 81–89. https://doi.org/10.1145/2787622.2787714

Force, C. T. (2020). Computing Curricula 2020: Paradigms for Global Computing Education

November 2020, ACM, NY, US. https://doi.org/10.1145/3467967

Gavrilović, N., Arsić, A., Domazet, D., & Mishra, A. (2018). Algorithm for adaptive learning

process and improving learners’ skills in Java programming language. Computer

Applications in Engineering Education, 26(5), 1362–1382. DOI: 10.1002/cae.22043

http://dx.doi.org/10.1109/MAHC.2013.46
http://dx.doi.org/10.1007/s10956-007-9055-5
http://dx.doi.org/10.1145/1352322.1352218
http://dx.doi.org/10.1145/1272848.1272879
http://dx.doi.org/10.1016/j.ijinfomgt.2019.102058
http://dx.doi.org/10.1080/13678868.2013.821267
https://doi.org/10.1145/2593246
http://dx.doi.org/10.30935/cedtech/8247
https://doi.org/10.1145/3287324.3287517
http://dx.doi.org/10.15388/infedu.2021.22
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=e32b65428b8ea54fd628839fd7386c88716a319b
https://doi.org/10.1145/2787622.2787714
https://doi.org/10.1145/3467967
http://dx.doi.org/10.1002/cae.22043

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 74

Geissler, M., Brown, D., McKenzie, N., Peltsverger, S., Preuss, T., Sabin, M., & Tang, C.

(2020). Information Technology Transfer Curricula 2020: Curriculum Guidelines for

Two-Year Transfer Programs in Information Technology. ACM.

https://dx.doi.org/10.1145/3414584

Güney, Z. (2019). Four-Component Instructional Design (4C/ID) Model Approach for Teaching

Programming Skills. International Journal of Progressive Education, 15(4), 142–156.

DOI: 10.29329/ijpe.2019.203.11

Hannay, J. E., Dybå, T., Arisholm, E., & Sjøberg, D. I. K. (2009). The effectiveness of pair

programming: A meta-analysis. Information and Software Technology, 51(7), 1110–

1122. https://doi.org/10.1016/j.infsof.2009.02.001

Harvard University Competency Dictionary FY14 (2014), Harvard University Website

http://hms.harvard.edu/, 2014.

Havenga, H. M. (2015). Project-based learning in higher education: exploring programming

students’ development towards self-directedness. South African Journal of Higher

Education, 29(4), 135–157. https://hdl.handle.net/10520/EJC182452

Hennig-Thurau, T., Ravid, S. A., & Sorenson, O. (2021). The economics of filmed

entertainment in the digital era. In Journal of Cultural Economics (Vol. 45, Issue 2, pp.

157–170). Springer. 10.1007/s10824-021-09407-6

Hetling, A., Watson, S., & Horgan, M. (2014). “We live in a technological era, whether you like

it or not” client perspectives and online welfare applications. Administration & Society,

46(5), 519–547. 10.1177/0095399712465596

Huitt, W. (2011). Bloom et al.’s taxonomy of the cognitive domain. Educational Psychology

Interactive, 22. http://www.edpsycinteractive.org/topics/cognition/bloom.html

Kaharuddin, A. (2020). Communicative Competence-Based Syllabus Design for Initial English

Speaking Skills. Available at SSRN: https://ssrn.com/abstract=3559105.

Kim, Y., Hsu, J., & Stern, M. (2006). An update on the IS/IT skills gap. Journal of Information

Systems Education, 17(4), 395. https://jise.org/volume17/n4/JISEv17n4p395.html

Labor, U. D. (2017). Occupational Outlook Handbook (OOH), US Bureau of Labor Statistics.

Retrieved From. https://www.bls.gov/ooh/computer-and-information-

technology/home.htm

Liu, J., & He, L. (2015). Practical skills training in computer education. International Journal of

Information & Computer Science, 4, 25–29. https://doi.org/10.14355/IJICS.2015.04.004

Longenecker, B., Babb, J. S., Waguespack, L., Janicki, T., & Feinstein, D. (2015). Establishing

the Basis for a CIS (Computer Information Systems) Undergraduate Degree Program:

On Seeking the Body of Knowledge. Information Systems Education Journal, 13(5), 37.

https://isedj.org/2015-13/n5/ISEDJv13n5p37.html

Marcus, J. (2017). Competency-based education, put to the test: An inside look at Learning and

Assessment at Western Governors University, Education Next, 17(4), 27–33, Fall 2017.

McGlochlin, T. (2018). 5 Stats About the Skills Gap that Demand Attention, PSI Select

International, 2018. https://blog.psionline.com/talent/5-stats-about-the-skills-gap-7684

that-demands-attention

Petersen, A., Craig, M., Campbell, J., & Tafliovich, A. (2016). Revisiting why students drop

https://dx.doi.org/10.1145/3414584
http://dx.doi.org/10.29329/ijpe.2019.203.11
https://doi.org/10.1016/j.infsof.2009.02.001
https://hdl.handle.net/10520/EJC182452
http://dx.doi.org/10.1007/s10824-021-09407-6
http://dx.doi.org/10.1177/0095399712465596
http://www.edpsycinteractive.org/topics/cognition/bloom.html
https://ssrn.com/abstract=3559105
https://doi.org/10.14355/IJICS.2015.04.004

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 75

CS1. Proceedings of the 16th Koli Calling International Conference on Computing

Education Research, 71–80. https://doi.org/10.1145/2999541.2999552

Rojas-López, A., & Garcia-Peñalvo, F. J. (2019). Initial learning scenarios based on the

computational thinking evaluation for the course Programming fundamentals at

INACAP. Proceedings of the Seventh International Conference on Technological

Ecosystems for Enhancing Multiculturality, 6–12. https://doi.org/10.1145/3362789.3362802

Rosegard, E., & Wilson, J. (2013). Capturing students’ attention: An empirical student. Journal

of the Scholarship of Teaching and Learning, 1–20.
https://scholarworks.iu.edu/journals/index.php/josotl/article/view/3891

Shackelford, R., McGettrick, A., Sloan, R., Topi, H., Davies, G., Kamali, R., Cross, J.,

Impagliazzo, J., LeBlanc, R., & Lunt, B. (2006). Computing curricula 2005: The

overview report. ACM SIGCSE Bulletin, 38(1), 456–457.

https://doi.org/10.1145/1124706.1121482

Sobral, S. R. (2021). Strategies on teaching introducing to programming in higher education.

World Conference on Information Systems and Technologies, 133–150. DOI:

10.1007/978-3-030-72660-7_14

Souza, M., Rodrigues, P. (2015). Investigating the effectiveness of the flipped classroom in an

introductory programming course. The New Educational Review, 40(1), 129–139. DOI:

10.15804/tner.2015.40.2.11

Sultana, S. (2016). Defining the competencies, programming languages, and assessments for an

introductory computer science course. Old Dominion University. DOI: 10.25777/sgra-

pa16

Tan, P.-H., Ting, C.-Y., & Ling, S.-W. (2009). Learning difficulties in programming courses:

undergraduates’ perspective and perception. 2009 International Conference on Computer

Technology and Development, 1, 42–46. DOI: 10.1109/ICCTD.2009.188

von Konsky, B. R., Miller, C., & Jones, A. (2016). The skills framework for the information

age: Engaging stakeholders in curriculum design. Journal of Information Systems

Education, 27(1), 37. https://jise.org/volume27/n1/JISEv27n1p37.html

Voskoglou, M. (2021). Computers and Artificial Intelligence in Future Education. In Handbook

of Research on Teaching With Virtual Environments and AI (pp. 654–680). IGI Global.

DOI: 10.4018/978-1-7998-7638-0.ch028

Watson, C., & Li, F. W. B. (2014). Failure rates in introductory programming revisited.

Proceedings of the 2014 Conference on Innovation & Technology in Computer Science

Education, 39–44. https://doi.org/10.1145/2591708.2591749

Whitehall, B. L., & Lu, S. C. Y. (1994). Theory completion using knowledge-based learning.

Machine Learning: A Multistrategy Approach, 165.

Woodley, M., & Kamin, S. N. (2007). Programming studio: A course for improving

programming skills in undergraduates. Proceedings of the 38th SIGCSE Technical

Symposium on Computer Science Education, 531–535.

https://doi.org/10.1145/1227310.1227490

Zhang, L., Nouri, J., & Rolandsson, L. (2020). Progression of Computational Thinking skills in

Swedish compulsory schools with block-based programming. Proceedings of the

Twenty-Second Australasian Computing Education Conference, 66–75.

https://doi.org/10.1145/3373165.3373173

https://doi.org/10.1145/2999541.2999552
https://doi.org/10.1145/3362789.3362802
https://scholarworks.iu.edu/journals/index.php/josotl/article/view/3891
https://doi.org/10.1145/1124706.1121482
http://dx.doi.org/10.1007/978-3-030-72660-7_14
http://dx.doi.org/10.15804/tner.2015.40.2.11
http://dx.doi.org/10.1109/ICCTD.2009.188
https://doi.org/10.4018/978-1-7998-7638-0.ch028
https://doi.org/10.1145/2591708.2591749
https://doi.org/10.1145/1227310.1227490
https://doi.org/10.1145/3373165.3373173

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 76

Appendix A

Design of the competencies based on the guidelines given in ACM Curriculum 2020.

Competency Title: Console Based Business Application

Mega Competency 01

Develop a monolithic in-memory console-based business application for admin, employers and customers while

the requirements and design are provided

Mini Competency 01

Analyze and Write Algorithms for converting one form of data (input) into another form of data using

mathematical expressions with limited memory and available computational steps (Algorithms)

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Explain the Hardware Components (IO

Devices, CPU, memory) and their Role

while Computing any Problem.

1. Architecture and Organization

• IPO Cycle, Memory, CPU, Fetch

Decode Cycle

Understand

Explain the Instruction Code,

Computational Steps and Algorithm

1 Architecture and Organization

• IPO Cycle, Memory, CPU, Fetch

Decode Cycle

• Programming Fundamentals

• Algorithms

Understand

Define the Binary Language and its

Relationship with Algorithm and Program

1. Programming Fundamentals

• Algorithms

• Program

Understand

Explain Machine Language, High Level

Languages and Role of Compiler

1. Programming Fundamentals

• Algorithms

• Program

Understand

Define what is Computational Thinking and

its four pillars

1. Analytical and Critical Thinking Understand

Write an Algorithm that converts Input into

the required Output using Variables,

Constants and Arithmetic Operators.

1. Programming Fundamentals

• Variables

• Expressions

• Arithmetic operators

Apply

Evaluate the Correctness of Algorithms with

Different Test Cases.

1. Programming Fundamentals

• Algorithms

• Testing and debugging

Understand

Mini Competency 02

Analyze and Write Computer Programs for converting one form of data (input) into another form of data using

mathematical expressions (Input/Output)

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Write and execute a computer program that

shows output on monitor screen (Console)

1. Programming Fundamentals

• Output on Console

Apply

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 77

Explain why we need Variables and what is

their Relation with the Memory.

1. Programming Fundamentals

• Variables

2. Architecture and Organization

• Memory

Remember

Explain what is a Data Type, why we need it

and what is its Role in Variable Declaration

1. Programming Fundamentals

• Variables

• Datatypes

Remember

Write expressions using Variables, Constants

and Arithmetic Operators

1. Programming Fundamentals

• Variables

• Expressions

• Arithmetic operators

Apply

Write Expressions while considering the

Operator Precedence Rules

1. Programming Fundamentals

• Variables

• Expressions

• Arithmetic operators

• Precedence Rule

Apply

Write a Program in C++ that Declares

Variable, Stores Value in it and Prints its

Value on Console

1. Programming Fundamentals

• Variables

• Output on Console

Apply

Write a C++ program that evaluates

expressions consisting of Arithmetic

Operators, Constants and Variables

1. Programming Fundamentals

• Variables

• Expressions

• Arithmetic operators

• Output on Console

Apply

Write a C++ program that takes input from

the user, applies mathematical operations on

it and then converts that input into output.

1. Programming Fundamentals

• Input

• Variables

• Expressions

• Arithmetic operators

• Output on Console

Apply

Mini Competency 03

Analyze and Solve computational problems based on single and multiple conditions (Conditional Statements).

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Write a C++ program using a single

conditional statement with one Boolean

expression consisting of an Equal comparison

operator. (IF Statement)

1. Programming Fundamentals

• IF statement

• Comparison Operators

Apply

Write a C++ program using a single

conditional statement with one Boolean

expression consisting of Any comparison

operator. (IF Statement)

1. Programming Fundamentals

• IF statement

• Comparison Operators

Apply

Write a C++ program that involves multiple

decision making using conditional

statements. (Multiple IF Statements)

1. Programming Fundamentals

• Multiple IF statements

• Comparison Operators

Apply

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 78

Write a C++ program that makes multiple

decision making more optimized by

checking fewer conditional statements. (IF-

Else Statement)

1. Programming Fundamentals

• IF-Else statements

• Comparison Operators

Apply

Write a C++ program that makes complex

decision making using nested conditional

statements. (Nested IF Statement)

1. Programming Fundamentals

• Nested IF statements

• Comparison Operators

Apply

Write a C++ program that involves complex

decision making using a single conditional

statement with two Boolean expressions and

the AND logical operator.

1. Programming Fundamentals

• Conditional statements

• Comparison Operators

• Logical Operators

Apply

Write a C++ program that involves complex

decision making using a single conditional

statement with two Boolean expressions and

the OR logical operator.

1. Programming Fundamentals

• Conditional statements

• Comparison Operators

• Logical Operators

Apply

Write a C++ program that involves complex

decision making using a single conditional

statement with two Boolean expressions and

the NOT logical operator.

1. Programming Fundamentals

• Conditional statements

• Comparison Operators

• Logical Operators

Apply

Write a C++ program that involves complex

decision making using a single conditional

statement with multiple Boolean

expressions and multiple logical operators.

1. Programming Fundamentals

• Conditional statements

• Comparison Operators

• Logical Operators

Apply

Write a C++ program that involves complex

decision making using a single conditional

statement with multiple Boolean

expressions and multiple logical operators

while considering the precedence rules.

1. Programming Fundamentals

• Conditional statements

• Comparison Operators

• Logical Operators

• Precedence Rules

Apply

Mini Competency 04

Analyze and Solve complex computational problems involving repetition of dependent and independent

iterations (Loops)

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Write a C++ Program that repeats a Set of

Instructions for a specific number of times

to solve the given problem using Counter

Loop.

1. Programming Fundamentals

• Counter Loop (For Loop)

Apply

Write a C++ Program that repeats a Set of

Instructions for an unknown number of

times to solve the given problem using

Conditional Loop.

1. Programming Fundamentals

• Conditional Loop (While Loop)

Apply

Write a C++ Program that repeats a Set of

Instructions for any number of times to

solve the given problem using Counter

Loop.

1. Programming Fundamentals

• Counter Loop (For Loop)

Apply

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 79

Write a C++ Program that solves larger

problems by decomposing it into smaller

subproblems and combining their solution to

achieve final results using the Counter Loop.

1. Programming Fundamentals

• Computational thinking

• Counter Loop (For Loop)

Apply

Write a C++ Program that repeats a complex

set of instructions using nested loops.

1. Programming Fundamentals

• Counter Loop (For Loop)

• Nested Loops

Apply

Write a program that alters the normal flow

of the loop using continue and break

statements.

1. Programming Fundamentals

• Counter Loop (For Loop)

• Continue Statement

• Break Statement

Apply

Mini Competency 05

Analyze and Solve complex computational problems involving large amount of data (Arrays).

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Identify the scenarios when scalar variables

are not sufficient to handle the data and

subsequently arrays are required.

1. Programming Fundamentals

• Limitation of variables

Analyze

Write a C++ program that declares an Array,

takes a large number of elements as input

from the user in that array and then retrieves

that data from the array

1. Programming Fundamentals

• Arrays

• CRUD operations on Arrays

Apply

Write a C++ program that declares an Array,

takes an unknown number of elements as

input from the user and then retrieves that

data from the array

1. Programming Fundamentals

• Arrays

• CRUD operations on Arrays

Apply

Write a C++ program that processes data

elements in the array and make them in an

order.

1. Programming Fundamentals

• Arrays

• CRUD operations on Arrays

Apply

Write a C++ program for storing and

processing multiple information of a record

using parallel Arrays.

1. Programming Fundamentals

• Parallel Arrays

• CRUD operations on Parallel

Arrays

Apply

Mini Competency 06

Analyze and Solve complex computational problems by decomposing into reusable blocks of code (Functions)

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Write a Code that requires lengthy and

repeated structure to solve complex

problems.

1. Programming Fundamentals

2. Analytical and Critical Thinking

Apply

Identify the problems that arise due to the

lengthy and repeated code for complex

problems

1. Programming Fundamentals

2. Analytical and Critical Thinking

Analyze

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 80

Write a program that calls predefined

functions to generate the results.

1. Programming Fundamentals

• Functions (Pre-defined)

Apply

Write a program that calls a user-defined

function to generate the results

1. Programming Fundamentals

• Functions (User-defined)

Apply

Write a user defined function to solve the code

repetition issue.

1. Programming Fundamentals

• Functions (User-defined)

2. Analytical and Critical Thinking

Apply

Understand the importance of function

prototype.

1. Programming Fundamentals

• Functions (User-defined)

• Function Prototype

Remember

Write a code that uses global variables for

communicating between functions.

1. Programming Fundamentals

• Functions (User-defined)

• Function Prototype

• Global variables

Apply

Identify the difference between High coupled

and Low coupled functions.

1. Programming Fundamentals

• Functions (User-defined)

• High VS Low coupled Functions

Analyze

Write a highly cohesive and low coupled

function that can be reused in complex

problems.

1. Programming Fundamentals

• Functions (User-defined)

• Function Prototype

• Global variables

2. Analytical and Critical Thinking

Apply

Mini Competency 07

Analyze and Solve complex computational problems by using persistently stored data (File Handling)

Micro Competencies Knowledge Elements Bloom’s Taxonomy

Skill Level

Write a Code to show the limitations of taking

input and then displaying the output on the

console

1. Programming Fundamentals

• File Handling

2. Analytical and Critical Thinking

Apply

Write a code that solves the limitations of

taking input from the user

1. Programming Fundamentals

• File Handling

2. Analytical and Critical Thinking

Apply

Write a code that reads character by character

from the file.

1. Programming Fundamentals

• File Handling

• CRUD operations using files

Apply

Write a code that creates (store) data into the

permanent storage

1. Programming Fundamentals

• File Handling

• CRUD operations using files

Apply

Write a code that appends (insert) data into the

permanent storage.

1. Programming Fundamentals

• File Handling

• CRUD operations using files

Apply

Write a code that searches from the formatted

(comma separated file) storage.

1. Programming Fundamentals

• File Handling

• CRUD operations using files

Apply

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 81

Development of data driven applications

with permanent storage.

1. Programming Fundamentals

• File Handling

2. Analytical and Critical

Thinking

Create

Competency Title: Console based tiled 2D Game

Mega Competency 02

Develop a monolithic in-memory console-based 2D Tile Game while the requirements and design are provided

Prerequisite: Mini Competency 01 to Mini Competency 07

Mini Competency 08

Develop a 2D Game with interaction of characters and reward system

Micro Competencies Knowledge Elements Bloom’s Taxonomy Skill

Level

Write a program that stores similar records

using two dimensional arrays.

1. Programming Fundamentals

• 2D Arrays

Apply

Write a story for the 2D tile-based game,

identify the characters (Player and

enemies), game rules, goals, interactions

and reward system

1. Analytical and Critical Thinking Remember

Write a program that stores game maps and

game objects into the 2D Array and show

the map with the objects on the console

from the 2D Array

1. Programming Fundamentals

• 2D Arrays

Apply

Write a program to move a game object on

the console using arrow keys.

1. Programming Fundamentals

• Key Strokes

2. Analytical and Critical

Thinking

Apply

Write a program to detect interaction

between objects and update the game state

accordingly.

1. Programming Fundamentals

• 2D Arrays

2. Analytical and Critical

Thinking

Apply

Write a program that stores data of a 2D

array into file and loads the data back to 2D

Array using file handling.

1. Programming Fundamentals

• 2D Arrays

• File Handling

2. Analytical and Critical

Thinking

Apply

Write a program that saves the Game Map

into the file and loads it back to the 2D

array.

1. Programming Fundamentals

• 2D Arrays

• File Handling

2. Analytical and Critical

Thinking

Apply

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 82

Develop the Pac-Man game by loading data from the file. 1. Programming Fundamentals

• 2D Arrays

• File Handling

2. Analytical and Critical Thinking

Create

Competency Title: Problem Solving

Mega Competency 03

Solve real-world problems using computational thinking and programming constructs.

Prerequisite: Mini Competency 01 to Mini Competency 08

Appendix B

Sample self-assessment programming problems of Micro Competency 03 are as follows:

Problem 1

A hotel offers two types of rooms: studio and apartment. Prices are in dollars ($). Write a program that

calculates the price of the whole stay for a studio and apartment. Prices depend on the month of the stay:

May and October June and September July and August

Studio- 50$ / per night Studio - 75$ / per night Studio 76$ / per night

Apartment - 65$ / per night Apartment - 68$ /per night Apartment - 77$ / per night

The following discounts are also offered:

• For a studio, in case of more than 7 stays in May and October: 5% discount.

• For a studio, in case of more than 14 stays in May and October: 30% discount.

• For a studio, in case of more than 14 stays in June and September: 20% discount.

• For an apartment, in case of more than 14 stays, no limitation regarding the month: 10% discount.

Input Data

The input data is read from the console and contains exactly two lines:

• The first line contains the month – May, June, July, August, September or October.

• The second line is the number of stays – integer within the range [0 … 200].

Output Data

Print the following two lines on the console:

• On the first line: "Apartment: { price for the whole stay }$."

• On the second line: "Studio: { price for the whole stay }$."

Input Output Comments

May

15

Apartment:

877.50$.

Studio: 525.00$.

In May, in the case of more than 14 stays, the discount for the studio is 30% (50 -

15 = 35), and for the apartment is 10% (65 - 6.5 = 68.5).

The whole stay in the apartment: 877.50 lv

The whole stay in the studio: 525.00 lv

June

14

Apartment:

961.80$.

Studio:

1052.80$.

August

20

Apartment:

1386.00$.

Studio:

1520.00$.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 83

Problem 2

Write a program that checks whether a point {x, y} is placed onto any of the sides of a rectangle {x1, y1} – {x2,

y2}. The input data is read from the console and consists of 6 lines: the decimal numbers x1, y1, x2, y2, x and y

(as it is guaranteed that x1 < x2 and y1 < y2). Print "Border" (if the point lies on any of the sides) or "Inside /

Outside" (in the opposite case).

Test Cases:

Input Output

2

-3

12

3

12

-1

Border

2

-3

12

3

8

-1

Inside / Outside

Problem 3

A student has to attend an exam at a particular time (for example, at 9:30 am). They arrive in the exam room

at a particular time of arrival (for example 9:40 am). It is considered that the student has arrived on time if they

have arrived at the time when the exam starts or up to half an hour earlier. If the student has arrived more

than 30 minutes earlier, the student has come too early. If they have arrived after the time when the exam

starts, they are late.

Write a program that inputs the exam starting time and the time of student's arrival, and prints if the student has

arrived on time, if they have arrived early or if they are late, as well as how many hours or minutes the student

is early or late.

Input Data

Read the following four integers (one on each line) from the console:

• The first line contains exam starting time (hours) – an integer from 0 to 23.

• The second line contains exam starting time (minutes) – an integer from 0 to 59.

• The third line contains an hour of arrival – an integer from 0 to 23.

• The fourth line contains minutes of arrival – an integer from 0 to 59.

Output Data

Print the following on the first line on the console:

• "Late", if the student arrives later compared to the exam starting time.

• "On time", if the student arrives exactly at the exam starting time or up to 30 minutes earlier.

• "Early", if the student arrives more than 30 minutes before the exam's starting time.

If the student arrives with more than one minute difference compared to the exam starting time, print on the next

line:

• "mm minutes before the start" for arriving less than an hour earlier.

• "hh:mm hours before the start" for arriving 1 hour or earlier. Always print minutes using 2 digits, for

example "1:05".

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 84

• "mm minutes after the start" for arriving more than an hour late.

• "hh:mm hours after the start" for arriving late by 1 hour or more. Always print minutes using 2 digits,

for example, "1:03".

Test Cases

Input Output

Exam Starting Time (hour): 9

Exam Starting Time (minutes): 30

Student hour of arrival: 9

Student minutes of arrival: 50

Late

20 minutes after the start

Exam Starting Time (hour): 16

Exam Starting Time (minutes): 0

Student hour of arrival: 15

Student minutes of arrival: 0

Early

1:0 hours before the start

Exam Starting Time (hour): 9

Exam Starting Time (minutes): 0

Student hour of arrival: 8

Student minutes of arrival: 30

On time

30 minutes before the start

Problem 4

Vladimir is a student, lives in Sofia, and goes to his hometown from time to time. He is very keen on volleyball,

but is busy during weekdays and plays volleyball only during weekends and on holidays. Vladimir plays in

Sofia every Saturday, when he is not working, and he is not travelling to his hometown and also during 2/3

of the holidays. He travels to his hometown h times a year, where he plays volleyball with his old friends on

Sunday. Vladimir is not working 3/4 of the weekends, during which he is in Sofia. Furthermore, during leap

years, Vladimir plays 15% more volleyball than usual. We accept that the year has exactly 48 weekends, suitable

for volleyball. Write a program that calculates how many times Vladimir has played volleyball throughout the

year. Round the result down to the nearest whole number (e.g. 2.15 -> 2; 9.95 -> 9).

The input data is read from the console:

• The first line contains the word “leap” (leap year) or “normal” (a normal year with 365 days).

• The second line contains the integer p – the count of holidays in the year (which are not Saturday or

Sunday).

• The third line contains the integer h – the count of weekends, in which Vladimir travels to his hometown.

Test Cases:

Input Output

leap

5

2

45

normal

3

2

38

normal

11

6

44

leap

0

1

41

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 85

Problem 5

1. The figure consists of 6 blocks with size h * h, placed as in the figure below. The lower left angle of the

building is at position {0, 0}. The upper right angle of the figure is on position {2*h, 4*h}. The coordinates

given in the figure are for h = 2

Write a program that enters an integer h and the coordinates of a given point {x, y} (integers) and prints

whether the point is inside the figure (inside), outside of the figure (outside) or on any of the borders of the

figure (border).

Test Cases:

Input Output

2

3

10

Outside

2

2

2

Border

15

13

55

Outside

15

29

37

Inside

Problem 6

It is strange, but most people start planning their vacations well in advance. A young programmer from New

York has a certain budget and spare time in a particular season.

Write a program that accepts as input the budget and season, and as output displays the programmer's vacation

place and the amount of money they will spend.

The budget determines the destination, and the season determines what amount of the budget will be spent.

If the season is summer, the programmer will go camping, if it is winter – they will stay in a hotel. If it is in

Europe, regardless of the season, the programmer will stay in a hotel. Each camp or hotel, according to the

destination, has its own price, which corresponds to a particular percentage of the budget:

• If 100$ or less – somewhere in Bulgaria.

o Summer – 30% of the budget.

o Winter – 70% of the budget.

• If 1000$ or less – somewhere in the Balkans.

o Summer – 40% of the budget.

o Winter – 80% of the budget.

• If more than 1000$ – somewhere in Europe.

o Upon travelling in Europe, regardless of the season, the programmer will spend 90% of the budget.

Competency based learning framework of Introductory Programming course to enhance learner’s motivation and

skills

Ijaz, M.U., Shahid, M. & Waheed, T. (2025). J. Edu Psy and Ped. Sci. DOI:10.52587/jepps.v5i1.110 86

Input Data

The input data will be read from the console and will consist of two lines:

• The first line holds the budget – real number in the range [10.00 … 5000.00].

• The second line holds one of two possible seasons: "summer" or "winter".

Output Data

Two lines must be printed on the console.

• On the first line – "Somewhere in {destination}" among "Bulgaria", "Balkans" and "Europe".

• On the second line – "{Vacation type} – {Amount spent}".

o The Vacation can be in a "Camp" or "Hotel".

Test Cases:

Input Output

50

summer

Somewhere in Bulgaria

Camp - 15.00

75

winter

Somewhere in Bulgaria

Hotel - 52.50

312

summer

Somewhere in Balkans

Camp - 124.80

678.53

winter

Somewhere in Balkans

Hotel - 542.82

1500

summer

Somewhere in Europe

Hotel - 1350.00

Sample Survey that was filled after completing the self-assessments by each student.

Tasks

How I am Doing Programming How I am Feeling

Level 4 Level 3 Level 2 Level 1 Level 4 Level 3 Level 2 Level 1

I did it

without

any help

I did it

with a

little help.

I made

the logic

but my

code is

not

working

I could

not make

the logic.

I need

more help

to

understan

d it

Confiden

t!

It was a

piece of

cake.

Thrilled!

It was

challengi

ng but I

am

feeling

thrilled n

ow.

Confused!

I got

confused

after this

exercise.

Depressed!

I am

depressed

because I

cannot do it.

MC 01

MC 02

MC 03

MC 04

MC 05

MC 06

MC 07

MC 08

